Constants and conversion factors

universal gravitation: $G=6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} / \mathrm{s}^{2}$
mass of earth: $M_{E}=5.98 \times 10^{24} \mathrm{~m}$
radius of earth: $\mathrm{r}_{\mathrm{E}}=6378 \mathrm{~km}$
$1 \mathrm{mi}=1609 \mathrm{~m}$
Ift $=0.305 \mathrm{~m}$
$\mathrm{T}(\mathrm{K})=\mathrm{T}(\mathrm{C})+273$
$\mathrm{T}(\mathrm{C})=(5 / 9)(\mathrm{F}-32)$
$\mathrm{I} \mathrm{atm}=101.3 \times 10^{3} \mathrm{~Pa}=14.7 \mathrm{psi}$

Kinematics

displacement x , velocity v , acceleration a and time t
Set of equations for constant acceleration:
$\mathrm{v}_{\mathrm{f}}=\mathrm{v}_{\mathrm{i}}+\mathrm{at}$
$x_{f}=x_{i}+v_{i t}+1 / 2 a t^{2}$
$x_{f}=x_{i}+1 / 2\left(v_{i}+v_{f}\right) t$
$v_{f}{ }^{2}=v_{i}{ }^{2}+2 a\left(x_{f}-x_{i}\right)$
constant circular acceleration, same set of equations with angular displacement Θ, angular velocity ω, angular acceleration α.
tangential velocity $\mathrm{v}_{\mathrm{T}}=\mathrm{s} / \mathrm{t} \quad$ (s arc length, t time)
$\mathrm{v}_{\mathrm{T}}=\mathrm{r} \omega \quad$ (r radius)
tangential acceleration
$\mathrm{a}_{\mathrm{T}}=\mathrm{r} \alpha\left(\alpha\right.$ in rad/s $\left.{ }^{2}\right)$
centripetal acceleration ac $=v^{2} / r=r \omega^{2}$
$\omega=2 \pi / T \quad$ (T period is time for one revolution)

Newton's Second Law

$\Sigma \mathrm{F}=\mathrm{ma} \quad$ (m mass, F force)
$\Sigma \mathrm{T}=\mathrm{i} \alpha \quad\left(\mathrm{i}\right.$ moment of inertia, $\mathrm{i}=\mathrm{mr}^{2}$)
Work
$W=F d \cos (\Theta) \quad$ (d displacement, F force, Θ angle between the two)

Work = final total mechanical energy minus initial total mechanical energy
Power $=$ Work per time \quad or Power $=$ Force times Velocity

```
Energy
potential gravitational energy PE = mgh
( \(m\) mass, \(g\) gravitational acceleration, \(h\) height)
elastic potential energy PE \(=1 / 2 k^{2}\)
( k spring constant, x compression)
kinematic energy \(\mathrm{KE}=\mathrm{I} / 2 \mathrm{mv}^{2}\)
( m mass, v velocity)
Momentum
\(p=m v\)
Impuls J \(=\mathrm{F}_{\text {avg }} * \Delta \mathrm{t}\)
Impuls = change of momentum
Friction force
\(\mathrm{F}_{\mathrm{f}}=\mu \mathrm{F}_{\mathrm{N}} \quad\) ( \(\mu\) friction coefficient and \(\mathrm{F}_{\mathrm{N}}\) normal force)
Spring force
\(\mathrm{F}_{\mathrm{s}}=\mathrm{kx} \quad\) ( k spring constant, x compression)
Centripetal force
\(\mathrm{F}_{\mathrm{C}}=\mathrm{GmM} / \mathrm{I}^{2}=\mathrm{mv}^{2} / \mathrm{r}\)
center of mass
\(\mathrm{x}_{\mathrm{cm}}=\left(\mathrm{m}_{1} \mathrm{x}_{1}+\mathrm{m}_{1} \mathrm{x}_{2}\right) / \mathrm{m}_{1}+\mathrm{m}_{2}\)
```

Torque $=$ magnitude of force times lever arm

Angular momentum $L=i \omega$

