Constants and conversion factors

universal gravitation: G = 6.67×10^{-11} N m²/s² mass of earth: M_E = 5.98×10^{24} m radius of earth: r_E = 6378 km

I mi = 1609 m I ft = 0.305 m T(K) = T(C) + 273 T(C) = (5/9)(F - 32)I atm = 101.3x10³ Pa = 14.7 psi

<u>Kinematics</u>

displacement x, velocity v, acceleration a and time t

Set of equations for constant acceleration:

 $v_f = v_i + at$ $x_f = x_i + v_i t + 1/2at^2$ $x_f = x_i + 1/2(v_i + v_f)t$ $v_f^2 = v_i^2 + 2a(x_f-x_i)$

constant circular acceleration, same set of equations with angular displacement Θ , angular velocity ω , angular acceleration α .

tangential velocity $v_T = s/t$ (s arc length, t time) $v_T = r\omega$ (r radius) tangential acceleration $a_T = r\alpha$ (α in rad/s²) centripetal acceleration $a_C = v^2/r = r\omega^2$ $\omega = 2\pi/T$ (T period is time for one revolution)

Newton's Second Law

 $\Sigma F = ma$ (m mass, F force) $\Sigma \tau = i\alpha$ (i moment of inertia, i = mr²)

<u>Work</u> $W = F d cos(\Theta)$ (d displacement, F force, Θ angle between the two) Work = final total mechanical energy minus initial total mechanical energy

<u>Power</u> = Work per time or Power = Force times Velocity Energy potential gravitational energy PE = mgh(m mass, g gravitational acceleration, h height) elastic potential energy $PE = 1/2kx^2$ (k spring constant, x compression) kinematic energy $KE = 1/2mv^2$ (m mass, v velocity) Momentum p = mvImpuls $J = F_{avg} * \Delta t$ Impuls = change of momentum Friction force $F_f = \mu F_N$ (μ friction coefficient and F_N normal force) Spring force $F_s = k x$ (k spring constant, x compression) Centripetal force $F_C = G mM_E/r^2 = mv^2/r$ center of mass $x_{cm} = (m_1x_1 + m_1x_2)/m_1 + m_2$

<u>Torque</u> = magnitude of force times lever arm

Angular momentum L = i ω